Teacher: Marian Twohig

	Morning	Afternoon	
ind iger,	Introduction: QM Overview, API & Quad Theory, MS Acquisition modes.	Instrument Tuning: Tune page settings & acquisitions	
Tanasalany	MassLynx Overview: File structure and the Editors	MassLynx: Chromatograms, spectra & SIR/MRM. LC/MS basics	
WACINESSEN/	Mass Calibration: Software and calibrate our Quattro micro™.	Hardware Maintenance: Routine Maintenance	
Maursteiny	Quantification: Software	Quantification: Practical example Course Evaluation	

daily maintanance : cone.

Atmospheric Pressure Ionization (API)

Electrospray -

Liquid is sprayed out of a capillary tube to which a high voltage is applied to form a spray of charged droplets.

Atmospheric Pressure Chemical Ionization (APcI) -

Liquid is passed through a heated tube (fused silica capillary). The liquid is evaporated to produce gas phase molecules.

A high voltage is applied to a corona pin near the exit of the tube and the molecules are ionized when they pass through a cloud of ionized nitrogen atoms produced by the corona pin.

Models for formation of Gas Phase lons from Droplets

Ion Evaporation Model

Through evaporation and fissioning, droplets reduce in size to 10-20 nM in Diameter

lons then 'evaporate' from the droplet's surface.

The more 'Surface Active' a molecule is, the more readily it will form ions in electrospray.

Charged Residue Model

Droplets continue to lose solvent molecules through evaporation till a charged residue remains.

For an analyte of the form MX, the charged residue will be of the form:

 $(M^+)_n(MX)_m$

Samples Analyzed in ES mode Typical ES Positive Ion Samples Peptides and proteins Peptides and proteins Small polar molecules Drugs and their metabolites Drugs and their metabolites Environmental contaminants Dye compounds Some organometallics Some organometallics Small saccharides Typical ES Negative Ion Samples Some proteins Some drug metabolites (e.g. conjugates) Oligonucleotides Some saccharides and polysaccharides

Atmospheric Pressure Chemical Ionization (APcI)

Low molecular weight (<1000 Da)

Singly charged species

Fragmentation, even at low cone voltages

Mobile phase can be non-polar (normal-phase chromatography)

APCI Ionization

- ◆ Higher temperature, more aggressive ionization.
- ◆ Solvent molecules are in the gas phase.
- Ionization takes place in the plasma.
- Goal of the nitrogen is to evaporate solvent

expelled from fused silica.

May be more sensitive than electrospray with

some non-polar molecules

APcl lons

In positive ion APcI, ions similar to those formed in positive ion electrospray are formed. For example: (M+H)+ or (M+Na)+

In negative ion APcI, the (M-H)- ion formed in negative ion electrospray is also produced.

Also in negative ion APcI, free electrons are formed. Certain types of molecules can pick up one of the free electrons produced by the corona pin and become negatively charged without a change in mass. This process is sometimes referred to as "M+•" or "M plus dot".

1

A.S.

	APCI versus Electrospray			
	APcI	Electrospray		
Ionization	Gas Phase Process	Solution Phase Process		
Probe	Fused Silica Capillary	Stainless Steel Capillary		
Potential	Applied to Corona Pin	Applied to Capillary		
Process	Probe heater vaporizes the liquid.	Spray of charged droplets produced.		
	All molecules are now in the gas phase.	Liquid is evaporated from the droplets.		
	Corona pin produces nitrogen ions.	Then droplets split into smaller droplets.		
	Molecules are ionized when they collide with the nitrogen ions.	When the droplets get small enough, ions enter the gas phase.		

APCI versus Electrospray (continued)				
	APcI	Electrospray		
Fragments	More vigorous ionization. More fragments produced.	'Gentler' ionization. Less fragments produced.		
Sample Types	Low MW<1000 Can be less polar.	Small & Large Molecules Tend to be more polar.		
Charges	Usually Singly Charged.	May be Multiplied Charged.		
Flow Rates	0.2 - 2 mL/min	0.001 - 1 mL/min		
Temperatures	Source ~ 120-140 °C Probe ~ 450-550 °C	Infusion:Source ~ 80 °C Desolvation ~ 120°C		
		HPLC: Source ~ 120 °C Desolvation ~ 350 °C		

Positive or Negative?				
Compound Type	Easiest Formed Ions			
Basic Compounds (-NH ₂)	(M+H)⁺	Pos lons		
Acidic Compounds (-CO ₂ H, -OH)	(M-H) ⁻	Neg lons		

Quattro micro Training Course

and the constant

<section-header><section-header>

Converting Continuum Data to Centroid Data

The mass spec can also take each profile or continuum spectrum it has acquired and convert it 'on the fly' to centroid data. In this process, the center of each spectral peak is determined and only information on the center of each peak is transmitted to MassLynx.

Mode	Maximum Scan Speed At 16pts/Da	Typical Use
Centroid	1000 amu/sec	GC, OpenLynx, FractionLynx, high concentration samples
MCA	1000 amu/sec (EPCAS)	Multiply charged species, non-time resolved data (e.g. Infusion)
	400 amu/sec (TDAT)	
Continuum	1000 amu/sec (EPCAS)	Multiply charged species, time resolved data (<i>e.g.</i> HPLC)
	500 amu/sec (TDAT)	

Machanne

.

66

Tune Page - the brain of the mass spec

- ♦ Ion mode is set
- Instrument parameters are set.
- API and Collision gases are controlled.
- Parent compounds are identified and optimized
- Daughter ions are determined and optimized
- Mass Resolution is set
- Collision Energies are determined
- Acquisitions performed
- PMT is adjusted when necessary

75

Mode	Maximum Scan Speed At 16pts/Da	Typical Use
Centroid	1000 amu/sec	GC, OpenLynx, FractionLynx, high concentration samples
МСА	1000 amu/sec (Quattro <i>micro</i>)	Multiply charged species, non-time resolved data (e.g. Infusion)
Continuum	1000 amu/sec (Quattro <i>micr</i> o)	Multiply charged species, time resolved data (e.q. HPLC)

Acquirin Example of Mass R	g Spectra via Tune Page - ange and Run Times for a MS Scan]				
Data File Name. Text	TEST_001				
Function Data Format Masses (m/z) Set Mass Start Mass Eng Mass	MS Scan Image: Constraint of the state of t				
Drign					
In the above example, spectra will be acquired from a m/z of 50 to 500. Total acquisition time will be 1 min. A spectra will be acquired in 1.5 seconds, the system will take 0.1 seconds to reset, then another spectra will be acquired.					

Data File Name	TEST_002		•
Text.	Sample A Infused 10	µL/min Duaghter Scan	
11月1日日 11月1日 11月1日 11月1日 11月1日 11月1日 11月1日 11月111日 11月111 11月111 11月111 11月1111 111111			'Click' on 'Origin'
Function	Daughter Scan 🕱		to enter info on
Data Format	Continuum 👻		the acquisition ru
- Masses (m/z) Set Mass	145	Run Duration (mins)	. (e.g. Sample ID.)
Start Mass	50	Scan Time (s)	
EngMass	200	Inter Scan Time [s] 💭 🛄	
ि	Stær C	pse Digin.,]	
	Cartrany region (Bertran)		47 (10) 1121-

Factors to Consider in LC/MS Method Development

- ♦ Ionization mode.
- Column.
 - Diameter and Flow Rate
 - •Plumbing
- Mobile phase. Can effect both the chromatography and ionization process.

- APCI : 0.2 2 mL/min No need to split the LC-flow.
- ESI : 1 300 μL/min routinely -Up to 1 mL/min possible. Flow is usually split at the higher LC flow rates so that approximately 250 μL/min is sent to the mass spectrometer.

LC Flow Ra	ate
------------	-----

The internal diameter of the analytical column used depends on the LC flow rate.

Flow	Rate
0.5 - 2	mL/min
0.1 - 0.3	mL/min
40 - 50	µL/min
< 10	µL/min

Column I.D.		
3.9 - 4.6	mm I.D.	
2 - 2.1	mm I.D.	
1	mm I.D.	

Capillary column

Mobile Phase Considerations

♦ pH

- Solvents and additives
- Composition may be a compromise between what gives the best ionization and what gives the best LC separation.

pH Considerations

Positive ion mode -

Analysis of basic compounds

Lower pH with an acid e.g., Formic or acetic acid

Negative ion mode -

Analysis of acidic compounds

Raise pH with a base e.g., Ammonium hydroxide/Ammonia solution.

Commonly Used Solvents and Additives

Solvents

Water Acetonitrile Methanol Isopropanol Additives Acetic Acid Formic Acid Ammonium Hydroxide Ammonium Acetate* Ammonium Formate*

> (* = Can be used as a buffer. Salt concentrations should be kept to 10 mM or less.)

Other Solvents and Additives

IPA, ethanol, 2-methoxyethanol, etc.

Trifluoroacetic acid (TFA) - Proteins and Peptides

Triethylamine (TEA) - Can enhance -ve ion mode,

Tetrahydrofuran (THF)

Normal phase chromatography

Column Cleanup Solvents (MeCl2, Acetone)

nebulizer gas.

Quattro micro Training Course

Ion Suppression

- Caused by Interfering Components in the LC Flow that elute at the same time as the analyte of interest. These Interfering Components can
 - Interfere with Ionization Process
 - Be Preferentially lonized.
- These Interfering Components are often present in matrix samples and can cause problems in analyses of biological and environmental samples. Matrix standards are used sometimes to account for ion suppression.
- Changes in LC Methods and Sample Preparation are often used to minimize ion suppression problems.

LC Mobile Phase Gradients

- Mobile Phase Gradients can be used to separate analytes from interfering matrix components that might cause ion suppression.
- The LC is setup with both organic and aqueous mobile phases.
- The percentage of organic solvent in the mobile phase is varied.

